Design for scalability
It is often advised to focus system design on hardware scalability rather than on capacity. It is typically cheaper to add a new node to a system in order to achieve improved performance than to partake in performance tuning to improve the capacity that each node can handle. But this approach can have diminishing returns (as discussed in performance engineering). For example: suppose 70% of a program can be sped up if parallelized and run on multiple CPUs instead of one. If α is the fraction of a calculation that is sequential, and 1 − α is the fraction that can be parallelized, then the maximum speedup that can be achieved by using P processors is given according to Amdahl's Law: . Substituting the value for this example, using 4 processors we get . If we double the compute power to 8 processors we get . Doubling the processing power has only improved the speedup by roughly one-fifth. If the whole problem was parallelizable, we would, of course, expect the speed up to double also. Therefore, throwing in more hardware is not necessarily the optimal approach.
[edit] Weak versus strong scaling
In the context of high performance computing there are two common notions of scalability. The first is strong scaling, which is defined as how the solution time varies with the number of processors for a fixed total problem size[6]. The second is weak scaling, which is defined as how the solution time varies with the number of processors for a fixed problem size per processor.
No comments:
Post a Comment